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Abstract—Non-linear stability of a liquid condensate film flowing on an inclined isothermal surface and
adjacent to a flowing pure vapour is investigated by the method of multiple scales. Results from the analysis
are discussed for the special cases of forced flow steam condensation on vertical surfaces, under horizontal
surfaces, and above horizontal surfaces. It is found that increasing cocurrent steam velocity has a stabilizing
effect on thin condensate films flowing on vertical surfaces and under horizontal surfaces when the vapour
velocities are small. It is also found that thin condensate films flowing above horizontal surfaces under the
action of cocurrent low velocity forced steam flow are stable with respect to both infinitesimal and finite
amplitude disturbances but become unstable at high vapour velocities.

INTRODUCTION

CONDENSATION heat transfer is important in power
plant systems, refrigeration equipment and many
other industrial processes. Condensation of pure
quiescent saturated vapours on flat isothermal sur-
faces have been studied by Nusselt [1], Rohsenow [2],
Sparrow and Gregg [3], Chen [4], and Koh et al. [5].
Analyses of steady-state condensation of flowing pure
saturated vapours on flat isothermal surfaces were
reported by Shekriladze and Gomelauri [6], Denny
and Mills [7], and Koh [8]. Steady condensate film
flow and heat transfer as determined from steady-
state theoretical investigations were later subjected to
hydrodynamic stability analyses. Linearized stability
studies of condensate films flowing under the action
of gravity on flat isothermal walls were reported in
refs. [9-12]. All of these investigations of linearized
stability characteristics of condensate films are limited
to disturbances having infinitesimal amplitudes and
become invalid as the amplitude of the disturbances
become finite. Stability characteristics of finite ampli-
tude disturbances on condensate films have also been
studied previously by means of a non-linear stability
analysis [13]. It was found from results of this non-
linear stability analysis that linearly unstable small
disturbances on a vertical wall reach finite equilibrium
amplitudes when the Reynolds number is small. It
was also found that small but finite amplitude distur-
bances in the linearly stable region of the a—Re plane
are also stable according to the non-linear theory.
All of the stability analyses of film condensation
reported in refs. [9-13] are limited to the special case
of quiescent vapour condensation. Reference [14] pre-
sented a linearized stability analysis of a condensate
film adjacent to a flowing pure saturated vapour.
The purpose of this theoretical study is the exten-
sion of the analysis presented in ref. [14] to the study
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of the characteristics of finite amplitude disturbances
on a condensate film flowing over an inclined iso-
thermal surface and adjacent to a flowing pure satu-
rated vapour. The first-order perturbation solution
for the dimensionless temperature distribution as well
as the problem formulation are directly adapted from
that given in ref. [14]. The present study corresponds
to a non-linear stability analysis of condensate films
as determined by steady-state analyses reported in
refs. [4-8]. Results are discussed for the particular
cases of forced vapour flow condensation of steam on
vertical surfaces, above horizontal surfaces, and under
horizontal surfaces.

DERIVATION OF THE STABILITY PROBLEM

Saturated vapour at temperature T, flowing with
free stream vector velocity V, next to a condensate
film on an inclined isothermal plane surface at tem-
perature T, is considered (Fig. 1). A constant free
stream ¥-component vapour velocity, U,q, is assumed
in accordance with previous steady-state analyses of
the problem. This is an idealized free stream condition
and will not correspond to the actual physical situ-
ation in most practical applications. All of the pre-
vious steady-state analyses of the problem [4-8] were
based on this free stream condition. The present study
is an investigation of the stability of the flows reported
in refs. [4-8] and, consequently, the same vapour free
stream condition is retained.

Almost all of the previous studies of the stability
of film condensation are based on the parallel flow
approximation and effects of nonparallelism in the
base flow are also neglected in the present analysis.
The interfacial mass, momentum and energy con-
ditions across the liquid—vapour interface during forced
vapour condensation were formulated in ref. [14] for
the case of negligibly small vapour hydrodynamic
boundary layer thickness and the dimensionless prob-
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NOMENCLATURE

4 complex wave amplitude ¥ o.lp
a wave amplitude & small parameter
¢ complex wave velocity, ¢, +1ic¢; i film thickness
¢, ¢ wave amplification rate coefficients fo time averaged base flow film thickness
¢, 6y Wave velocity coefficients i dimensionless base flow film thickness
F acceleration effect parameter, i dimensionless disturbance film

{(e,AT/hy,) Pr thickness
9 gravitational acceleration 0 dimensionless liquid temperature
L length of plate A wavelength
L L/v¥g)y'? v liquid kinematic viscosity
L,, L, differential operators given in p.p.  liquid, vapour density

Appendix B o surface tension
N 2 3gpyiiighi3 ¢ angle of inclination
Pr Prandt! number i vapour potential function
R g 2v? i dimensionless vapour disturbance
it dimensional, dimensionless time potential function
Ty, Ty, T, multiple time scales ¥ dimensionless liquid stream function.
TT. T, liquid, vapour, wall temperatures
u Twol(gv/2)'"
U, vapour f-component velocity Subscripts
(Z 0 characteristic velocity, gij3 /2v x, 3,21, T, Ty, Ty partial differentiation
Uy bNase gow X-component velocity with respect to the subscript.
U UVO/ UO
v, vapour j-component velocity
Vo base flow j-component velocity Dimensionless terms
14 — V! Us t a4,
(%, 7, (x,y) dimensional, dimensionless X oaX/ s

Cartesian coordinates. ¥ yifio

z ay
Greek symbols n Alfio

o wave number, 277 ,/4 ¢ a®/ U,

F1G. 1. Geometry of the separated two-phase flow.

lem formulation was analysed by means of an asymp-
totic expansion valid for small wave numbers leading
to a first-order asymptotic solution for the liquid
stream function and the liquid temperature distri-
bution. The problem formulation is given by equa-
tions (20)—(33) of ref. [14]. It is noted here that this
problem formulation is based on a generalized version
of the so called ‘asymptotic shear stress interfacial
condition’ which is represented by interfacial con-

dition (28) of ref. [14]. The derivation of this inter-
facial condition is obtained via neglect of vapour
boundary layer and by balancing the liquid shear
stress with the momentum flux across the interface.
Negligence of the vapour boundary layer is a valid
approximation at high condensation rates. When the
condensation rate is high, the vapour hydrodynamic
boundary layer thickness becomes thin and it then
becomes possible to study the non-linear stability
problem by considering the coupled system of the
condensate film and the free stream vapour flow.
The interfacial condition (28) reported in ref. [14]
corresponds to and is in agreement with equation (4)
of ref. [6] and equation (5) of ref. {7].

A first-order asymptotic solution of the non-linear
stability problem with respect to the dimensionless
wave number is given by equations (37)—(45) of ref.
[14]. Substitution of this solution into interfacial con-
ditions (30) and (31) of ref. {14] yields an interfacial
mass conservation condition (equation (46) of ref.
[141) and an interfacial energy conservation condition
(equation (47) of ref. [14]). The stability problem was
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then obtained by separating the film thickness and the
vapour free stream potential function into base flow
and disturbance components. The procedure reported
in ref. [14] leads to the following base flow and non-
linear stability problems.

The base flow problem:

(a) interfacial energy condition

d 3.
ko /fi—kafi*fi.—k; Ul +€%S, = dx {ksii* i

ko Anx + K10 + K13 U — k57,
—k\sUi*i }+0(@%); (1)
(b) interfacial mass condition
Jolfi— i — iUl — V+€’S,+0(2?) = 0. (2)
The non-linear stability problem :

(a) disturbance vapour motion and conditions at
z= 00

Q. +D,=0 3
D, =0,=0 atz=o00; “)
(b) interfacial energy condition valid at z = 0
kon+kin,+kiat+ kit tEol o+ K19t
F 3y + K20 Pr; — K3 Doy — 5Dy

=E& {—SZ +ko’12 _2k2’1’7x—'k3’7xq)x_k29nxq)xz

0
_k3”xd)xx - Zak3’1d)xxz + EX— [kJO"nx +k3 lr’d)xx

+k6d)x(pxx _k7q)zd)xz + 3 Vkﬂ](l)xz + 3k3’1q)xt

- 3k9"’7xxx +k32””t -—'k! 1’11®x +k33rlx®x]}
+é? {"ko'l3 —kon’n,— ok’ ®,, —ak;n’®,,,

0
—k4””x®xz + 'a_x [k34ﬂ2’7x + 3k6’1®x¢)xx

+kysn?®,, — 3k, n®, @, + 3k, VD,
+ 3k8’72q)xt _3k9’72'7xxx +k36’12’7r _2k1 1']’1:(Dx

+k37ﬂﬂx¢x—knam¢f]}+0(83)+0(063); (%)

(c) interfacial mass condition valid at z = 0
Jonn+jit+ Uz + Ui +ja@ux — O —
=&{ =8\ +jont” =221 — js P — jallPox + a9 ®... }

+e*{—jon’ —jan’n.} +0@*) +0E). (6)

The non-linear terms in equations (5) and (6) were
neglected in the linearized stability analysis reported

oad,.
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in ref. [14]. Coefficients jo—j¢, ko—k25 and B—Bs were
reported in ref. [14]. The remaining coefficients are
listed in Appendix A. In the above equations S, and
S, correspond to effects of the finite amplitude dis-
turbance on the base flow. The base flow problem will
not be analysed in this study. A solution of the base
flow problem for the special case of vanishing wave
amplitude (e = 0) corresponding to steady forced
vapour flow condensation is presented in ref. [15].

SOLUTION BY THE METHOD OF MULTIPLE
SCALES

Interfacial mass condition (6) contains errors of the
order of a? and &°. Analysis of the stability problem
to second order with respect to the wave amplitude
will therefore contain errors of the order of «? if the
wave number and the wave amplitude are of the same
order. It is therefore necessary to consider the wave
number to be of the order of the square of the wave
amplitude. Condition (6) will then be expressed in the
following form :

Jon—@, = &(—=S§, +j0112)+82(—j0173 —JiM:
_erIx _"j4d)xx+aq)zz)+0(63) atz=0. (7)

Transformation from equation (6) into equation (7)
is algebraically permissible noting that ¢ is a dummy
variable and that this parameter will be replaced by
unity at the end of the analysis.

In order to study the non-linear stability charac-
teristics of waves having weak temporal amplification
rates, the linear problem will be converted into a
purely dispersive system by the introduction of

k,7=E17+sr 8
into equation (5) where
ki =&k, —joks) + joks, 9

and ¢ represents the wave speed corresponding to
neutrally stable disturbances. The resulting stability
problem will be analysed by the method of multiple
scales [16]. Introducing multiple time scales given by

10

the partial time derivative is transformed according
to

To=t T,=c¢t, T,=¢%

8,0 [, 0 20
5T, T e

a1, ¢ ATy an

Introduction of relation (11) and the following
asymptotic expansions :

O =D,+eb, +6°D,+0(*) (12)

(13)

into equations (3)—(5) and (7) yields three problems
corresponding to each order of ¢. These problems are
given in Appendix B. The dimensionless y-component

n=no+en, +e’n,+0(c*)
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vapour velocity has been eliminated from the stability
problem given in Appendix B by substitution of
V = j,+&>S, from equation (2). The solution of the
zeroth-order perturbation problem is a transverse dis-
turbance with slow amplitude modulation given by

o =Ae*+ e (14)

Dy = —jye "1, (13)

where X =x—~¢T,. A= A(T,,T,) is the compiex
wave amplitude which is a function of the slow time
scales. A is the complex conjugate of A. The zeroth-
order wave speed is found to be

¢ = —(ky+Jjokas) ko (16)

Substitution of the zeroth-order problem into the first-
order problem and elimination of the steady terms in
the interfacial energy condition yields

S, = 2ko,AA. )]

By this means, steady terms in the energy interfacial
condition of the first-order problem are carried to
equation (1) which is for the base flow film thickness.
Application of the solvability condition to the first-
order problem then yields

. ) o4 .
((foks 1)—1/(19)6'7,]—1FA=0. (18)
The interfacial energy condition in the first-order
problem given in Appendix B then becomes

L+ L@, = (kys +ik;0)A%e*+CC atz=

(19)

where CC stands for the complex conjugate of the
first term on the right-hand side. Steady terms in the
interfacial mass condition of the first-order problem
are carried to the steady part of the interfacial mass
condition (equation (2)) by choosing

S, = 2j,AA. (20)
The interfacial mass condition in the first-order prob-
lem then takes the following form:

@, = —jo(A?e®+CC) atz=0. (21)

Solution for the Laplace equation and boundary con-
ditions at z = co given in the first-order problem
reported in Appendix B together with conditions (19)
and (21) is then obtained as

0, = bA* et hA2e (22)

@, = Ljo(1—bye > 4>e*+CC (23)
where b = b,+ib, is given in Appendix A and b is the
complex conjugate of b. Substitution of equations (14)
and (15) and equations (22) and (23) into the right-

M. UnsaL

hand side of the second-order problem in Appendix
B and application of the solvability condition now
yields

. . o4 . \ -
(_lﬂkx—‘kl_lkl‘))ﬁ + (kag+iky)A°A=0. (24)
Variation of the complex wave amplitude of the non-
linear stability problem with respect to the slow time
scales T, and T, are given by equations (18) and (24).
Complex wave amplitude A will now be expressed by

A= tae” (25)
where a(T,, T,) is a real function for the wave ampli-
tude and B(T,, T,) is a correction to the zeroth-order
linear wave amplification rate, ¢. Application of equa-
tion (25) to equations (18) and (24) gives

da kmf‘

D a 26

0T, (ky—joke) > +kT ' 0

B __ Kimjekl (27)
(T. (e —joky)" +kiy

da  kigkao+ (k| —jokgdkay :

S A b L s " 28

pTz 4((k|—‘J0ks) +k o) (29)

B FoksdUoks =k ke g
oT, 4k — jok ) +k|9)

Noting that the wave amplification rate and the wave
speed are given by

(30)

_ - ap op
Cr—(*a——('—(ﬁg*f:‘}"ﬁ 57";) (31)

and utilizing equations (26)—(29) together with equa-
tion (8), one obtains

d\(4*) = a{cy +¢s(ea)’ fea

d¢ (32)

Cr = Cqy +Cr3(6a)3- (33)

Here, ac;, is the linear wave amplification rate and ac;;
is the coefficient of the non-linear wave amplification
rate. ¢, is the linear wave velocity and c¢,; is the
coefficient of the non-linear correction to wave speed.
These coefficients are given by

(k=K kyy
" - e 34
DT ok KT oo
k|9k49+(k1 —joks )k“
i3 = 35
T4k, — k) k2, (35)
_ (K Jokx)(kn—kn)
SR U L UL LA L AL 36
= (k|—lokx) + k3, (36)
_E|9k4xﬂ'@k£_»k )L (37)

o= 4((Joks—k,)? +k|9)



Non-linear stability of forced vapour flow condensation

Finally, equations (32) and (33) are simplified by
letting e = 1.

DISCUSSION

The scaling in the non-linear stability problem (in
equations (10)—(14) of ref. [14]) require that mean
liquid and vapour velocities be of the same order with
respect to a. The solution of the problem based on
this scaling (equations (34), (37) and (41) of ref. [14])
introduces F as an important parameter relating the
mean vapour and liquid velocities. It is noted that the
mean liquid and vapour velocities cannot be
independently specified in the statement of the mathe-
matical formulation of the problem. On the contrary,
a given mean vapour velocity will establish a cor-
responding mean liquid velocity. The relationship
between ¥ and @ is explicitly displayed in the solution
given in equation (37) of ref. [14]. Specifically, it is
found that ¥ = O(1) whenever ® = O(1/F) with
respect to the acceleration effect parameter, F.

The scaling in ref. [14] further requires that
y®, ~ —a’¥,. Noting that @, ~ —Va, ¥V,
Jo= F/yR and that ¥, = O(1) with respect to a, it is
clear that F/aR is of first order with respect to a. Here,
F/R is the slow scale for the base flow and « is the
slow scale for the stability problem. This ordering
limits the applicability of the non-linear stability
results to |a] « 1, i.e. to long waves. The present
results will be inapplicable for short waves and the
following discussion will be limited to long waves. The
solution to the non-linear stability problem as given
by equations (32)—(37) is in dimensionless form and
can be utilized to study many special situations. The
solution depends on eight parameters «, L, u, Pr, N,
F, y and ¢. Results will be discussed only for forced
vapour flow condensation of saturated steam at 100°C
onto an isothermal surface at 53°C. Only three differ-
ent surface orientations depicted in Fig. 2 will be con-
sidered, namely ¢ = 0, —90°, and 90°. For this prac-
tical example Pr = 2.62, N = 12347, F = 0.0333 and
y = 0.00061. In the present study, the linearized part
of the stability problem has been simplified by the
transformation of the interfacial mass conservation
condition (6) into equation (7). As a result, the
expression for the linear wave amplification rate given

-

Uvo t:_;"
0

vo
CONDENSATION BELOW A
. HORIZONTAL SURFACE ¢--90
— 1

o Oy ;‘

i

X

CONDENSATION ON CONDENSATION ABOVE A
A VERTICAL SURFACE HORIZONT/:L 90SURFAC!-:
6=0 =

Fi1G. 2. Vertical and horizontal surface orientations.
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0008 Al B ;
—~—~ &Cyy FROM EQUATION (56)
N _ 4«Cj FROM REF (14)
= Pr=262
8 0004 N=12347
- F=00333
F ¥ =0.00061
= ¢=-90
3 o L=815
E
s
<L
g -0004 §
~0008 o5 020

WAVE NUMBER

F1G. 3. Linear wave amplification rates for condensation
below a horizontal surface.

by equation (34) is an approximation to equation
(67) of ref. [14]. In order to test the accuracy of this
approximation, ac;, computed from equation (34) is
compared with ac; obtained from equation (67) of
ref. [14] in Fig. 3 for condensation below horizontal
surfaces. Good agreement between the two pre-
dictions for the linear wave amplification rate has been
observed for other values of Pr, N, F, 7, and ¢. A
slightly larger discrepancy is observed between the
two predictions at larger vapour velocities and smaller
density ratios which can be seen by the comparison
of Fig. 7 of this study with Fig. 5(a) of ref. [14]. The
non-linear wave amplification rate computed from
equation (32) for the same physical situation is
depicted in Fig. 4. It is observed from this figure that
an increase in the dimensionless free stream vapour
velocity, U, from 100 to 250 is sufficient to completely
stabilize a finite amplitude wave on a condensate film
under a horizontal surface and located at a dimen-
sionless distance of L = 815 from the leading edge of
the isothermal plane surface. Increased vapour veloc-
ity has stabilizing effects on both small amplitude
disturbances (Fig. 3) and finite amplitude dis-
turbances (Fig. 4) for this example. Linear and non-
linear wave amplification rates for cocurrent forced
vapour flow condensation at a dimensionless location
L = 815 from the upper end of an isothermal vertical

4x10° y

da
NGE
x
O'G\

[=]

g,

WAVE AMPLIFICATION RATE ok

'lodd‘ 1 1 1

-1 -05 0 05 1
WAVE AMPLITUDE, a

Fi6. 4. Wave amplification rates for condensation below a
horizontal surface.
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FiG. S. Linear and non-linear wave amplification coefficients
for condensation on a vertical surface.
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Fig. 6. Wave amplification rates for condensation on a
vertical surface.

surface are depicted in Fig. 5. The linear wave ampli-
fication rate decreases drastically while the non-linear
wave amplification rate increases slightly as the
dimensionless vapour velocity is increased from 0 to
250. The overall effect decreases the equilibrium wave
amplitude by an order of magnitude. Figure & shows
the wave amplification rate for a finite amplitude dis-
turbance when a« = 0.1 for the same physical situation
when the location on the surface is changed from
L = 815 to 2766. For this case, the condensate film
admits finite amplitude wave motion with large equi-
librium amplitudes. Increase of the dimensionless
vapour velocity from 0 to 250 tends to decrease the
equilibrium wave amplitude.

Non-linear stability characteristics of a disturbance
on a condensate film flowing over a horizontal plate
and located at a dimensionless distance L = 2766
from a leading edge of the plate are considered in Figs.
7 and 8. A finite amplitude disturbance at this location
is completely stable when u = 250. The linear wave
amplification coefficient, ac;;, is positive inside a small
wave number band centred about « = 0.04 when
1 = 500. The non-linear coefficient, ac;;, is negative
inside the same wavelength band. In this case, the
condensate film admits supercritically stable finite
amplitude wave motion. With further increase of the
vapour velocity to u = 750 both linear and non-linear
amplification coefficients become positive inside the
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0004 T T - T
= Pr-2.62
g §=1231.7
a =00333
w 0002 3-00006
< #-90
L= 2766
S ot
<{
: \
g
Z-0002 -
> \
3 uxo 50 70
= i
00044 . L I |
005 00 05 020

WAVE NUMBER, ¢

F16. 7. Linear wave amplification rates for condensation
above a horizontal surface.

g

NGNLINEAR  AMPLIFICATION RATE, @ Cis
=

fe=]
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>

i

250 Pre2 62
N-12347
500 & =000061
0001 - o

U=750

-0.002

L i
005 010 0B 0.20

WAVE NUMBER, <&

FiG. 8. Non-linear wave amplification coefficient for con-
densation above horizontal surfaces.

wave number band 0.08 < 2 < 0.11 which may be an
indication of possible entrainment into the vapour
phase. The theoretical analysis presented in this study
will lead to results of further practical value when the
analysis is extended for the prediction of heat transfer
through a wavy condensate film flowing on a surface
of arbitrary inclination and adjacent to a forced
vapour flow.
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APPENDIX A
=ky+ak,
= AUk =3k —2U %k 3+ 6k
= 3Ukq+5k\,
= 4k, —2Uk,,
=kys—2Uk,;
= 6Uk ¢+ 15k, s — Uk,3—3k;
= 10k, ,+3Uks
= 6k, — Uk,
= dk,s—4Uk 3
= ko—Jolks—kag) — jok3(1—20) —2(k30—Jj 3K+
—joka3) +2j 3k —6ky+20ks,

= =2k, +2joks) —68oks + 280k ) +2jok s

= ks +2joks —4jokae

= k3o +4joChy —4joks,

= 2joks—4jokao+ko—4k s+ 16k +4ck
= 4joCky—4jok,, —2¢k, + 2k,

= 2ko—2lko+ 83y — k3o — jo(4k 20 + 60k 5

+Jjoke+2joks)

= =2k, + jo(3ky, — 9k — 3k, —3ks3)

Koo = —3ko—3ky—kyy+ ko + o2k 20 +ky — 60k

—ka+4joks+3jokq+3jok13)

HMT 31:8-F

ky; = —ky—jo(2ks, +38ks+ ki —ky3 —3k3s+kaq)
kys = bkas—bikys+kys
kg = bikast+bkes+ksy

b, = (kqokaz +kaikas)/ (ki +k3s)

by = (karkaz —Kaokas)/(k3; +k33).

APPENDIX B

Zeroth-order problem
Differential equation

Do +Bp: = 0.
Boundary conditions at z = o
@y, = Py, = 0.
Interfacial energy condition at z = 0
Line+L,®y=0
where operators L, and L, are given as follows:
L= k0+kla—‘;—0 + k—”a_ax + k.saa—; + kgg:; + k.ga%
2 3 3 3
L =k 2 Koz = koo — kg
Interfacial mass condition at z =0
By, = jolo-
First-order problem
Differential equation
D +P,, =0
Boundary conditions at z = «©
®,=0,=0.
Interfacial energy condition at z = 0
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Second-order problem
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STABILITE NON LINEAIRE DE LA CONDENSATION D’UN ECOULEMENT FORCE
DE VAPEUR

Résumé—On étudie par la méthode des échelles multiples la stabilité non linéaire d’un film liquide de
condensation s’écoulant sur une surface inclinée isotherme et adjacente 4 un écoulement de vapeur pure.
Les résultats de I'analyse sont discutés dans les cas spéciaux de la condensation d’un écoulement forcé de
vapeur sur des surfaces verticales, sous et au-dessus de surfaces horizontales. On trouve que Paccroissement
de la vitesse de la vapeur a cocourant a un effet stabilisant sur les films minces de condensat sur des surfaces
verticales et sous des surfaces horizontales quand la vitesse de vapeur est faible. On trouve aussi que des
films minces coulant au-dessus des surfaces horizontales sous I'action dune faible vitesse forcée de vapeur
a cocourant sont stables vis-a-vis de perturbations infinitésimales ou d’amplitude finie, mais deviennent
instables aux grandes vitesses de vapeur.

NICHTLINEARE STABILITAT BEI DER KONDENSATION IN ERZWUNGENER
DAMPFSTROMUNG

Zusammenfassung—Es wird die nichtlineare Stabilitit eines Kondensatfilms, der auf einer gencigten iso-
thermen Oberflidche fliet und an seinen stromenden Dampf angrenzt, untersucht. Ergebnisse der Unter-
suchung werden fiir Spezialfille erértert: Fiir die Kondensation einer erzwungenen Dampfstrémung
an vertikalen Oberflichen und an der Unter- and Oberseite von horizontalen Flichen. Zunechmende
gleichgerichtete Dampfgeschwindigkeit hat auf einen diinnen Kondensatfilm auf einer vertikalen Ober-
fidche und an einer horizontalen Unterseite einen stabilisierenden EinfluBl, solange dic Dampf-
geschwindigkeiten klein sind. Ein diinner Kondensatfilm, der iiber eine horizontale Oberfliche flieBt, ist
unter der Einwirkung gleichgerichteter niedriger erzwungener Dampfgeschwindigkeit stabil. Dies gilt fiir
Stérungen mit unendlich kleiner oder auch endlicher Amplitude. Der Film wird jedoch bei hoheren
Dampfgeschwindigkeiten instabil.

HEJIUHEUHAS YVCTONUYHUBOCTb KOHAEHCALIUM TTPU BLIHYXJEHHOM TEUEHUH
TTAPA

Aunorauus—HennueiiHas yCTOMMMBOCTL TUICHKH JKHOKOTO KOHICHCATA, HATEKAIOUWIEH Ha HAKJIOHHYIO
H30TEPMHUMECKYIO NOBEPXHOCTD M MPUMBIKAIOILYIO K JBHXKYIIEMYCS OTOKY 6ecnipumecHoro napa, uecie-
IIyeTCH METOJOM MHOXECTBEHHBIX MacirraGoB. PesynbraThl aHanmm3a o6CYXKAalOTCH I KOHKPETHBIX
CIIy4yaeB KOHIEHCAIMH BOASHOTO Mapa HAa BEPTHKAIbHBIX MOBEPXHOCTAX, IOA TOPH3OHTAJLHBIMH
HOBEPXHOCTAMH M Haa HAMH. OGHapyXeHO, 4TO BO3pacTaromas CKOpOCTb COMYTCTBYIOIIErO MOTOKA
OKa3bIBaeT crabunM3Npyiollee BIHsHAE Ha TOHKHE IUICHKH KOHICHCATa, CTEKAIOIHME 110 BEPTHKAILHBIM
[OBEPXHOCTSM M NOJ TOPH3OHTAJBHBIMH TOBEPXHOCTAMH B C/Iy4ae MaJIbIX CKOPOCTeH NOTOKa napa.
HaiigeHo Takxke, 4TO TOHKHME [LUICHKH KOH/IEHCATA, NBHXYIUMECS HAll FOPH3OHTANLHBIMH NOBEPXHOCTAMU
oI [eHCTBHEM COMYTCTBYIOLIErO HA3KOCKOPOCTHOrO BBIHYXACHHOTO NMOTOKA BOASHOTO mapa, yCTOH-
YHBBI [O OTHOIIEHHIO K BO3MYILEHHAM MH(HHHTE3eMAJIbHOH H KOHEYHOH aMILIMTYHA, HO CTaHOBSTCH
HeyCTONYMBLIMH NIPH BBICOKHX CKOPOCTSX 11apa.



