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Abstract-Non-linear stability of a liquid condensate film flowing on an inclined isothermal surface and 
adjacent to a flowing pure vapour is investigated by the method of multiple scales. Results from the analysis 
are discussed for the special cases of forced flow steam condensation on vertical surfaces, under horizontal 
surfaces, and above horizontal surfaces. It is found that increasing cocurrent steam velocity has a stabilizing 
effect on thin condensate films flowing on vertical surfaces and under horizontal surfaces when the vapour 
velocities are small. It is also found that thin condensate films flowing above horizontal surfaces under the 
action of cocurrent low velocity forced steam flow are stable with respect to both infinitesimal and finite 

amplitude disturbances but become unstable at high vapour velocities. 

INTRODUCTION 

CONDENSATION heat transfer is important in power 
plant systems, refrigeration equipment and many 
other industrial processes. Condensation of pure 
quiescent saturated vapours on flat isothermal sur- 
faces have been studied by Nusselt [ 11, Rohsenow [2], 
Sparrow and Gregg [3], Chen [4], and Koh et al. [S]. 
Analyses of steady-state condensation of flowing pure 

saturated vapours on flat isothermal surfaces were 
reported by Shekriladze and Gomelauri [6], Denny 
and Mills [‘7l, and Koh [8]. Steady condensate film 
flow and heat transfer as determined from steady- 
state theoretical investigations were later subjected to 
hydrodynamic stability analyses. Linearized stability 
studies of condensate films flowing under the action 
of gravity on flat isothermal walls were reported in 
refs. [9-121. All of these investigations of linearized 

stability characteristics of condensate films are limited 
to disturbances having infinitesimal amplitudes and 
become invalid as the amplitude of the disturbances 
become finite. Stability characteristics of finite ampli- 
tude disturbances on condensate films have also been 
studied previously by means of a non-linear stability 
analysis [13]. It was found from results of this non- 
linear stability analysis that linearly unstable small 
disturbances on a vertical wall reach finite equilibrium 
amplitudes when the Reynolds number is small. It 
was also found that small but finite amplitude distur- 
bances in the linearly stable region of the a-Re plane 
are also stable according to the non-linear theory. 

All of the stability analyses of film condensation 
reported in refs. [9-131 are limited to the special case 
of quiescent vapour condensation. Reference [ 141 pre- 
sented a linearized stability analysis of a condensate 
film adjacent to a flowing pure saturated vapour. 

The purpose of this theoretical study is the exten- 
sion of the analysis presented in ref. [14] to the study 
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of the characteristics of finite amplitude disturbances 
on a condensate film flowing over an inclined iso- 
thermal surface and adjacent to a flowing pure satu- 

rated vapour. The first-order perturbation solution 
for the dimensionless temperature distribution as well 
as the problem formulation are directly adapted from 
that given in ref. [14]. The present study corresponds 
to a non-linear stability analysis of condensate films 

as determined by steady-state analyses reported in 
refs. [4-81. Results are discussed for the particular 
cases of forced vapour flow condensation of steam on 
vertical surfaces, above horizontal surfaces, and under 
horizontal surfaces. 

DERIVATION OF THE STABILITY PROBLEM 

Saturated vapour at temperature Fs flowing with 

free stream vector velocity V, next to a condensate 
film on an inclined isothermal plane surface at tem- 
perature pW is considered (Fig. 1). A constant free 
stream f-component vapour velocity, fi”,,, is assumed 
in accordance with previous steady-state analyses of 
the problem. This is an idealized free stream condition 
and will not correspond to the actual physical situ- 
ation in most practical applications. All of the pre- 
vious steady-state analyses of the problem [48] were 
based on this free stream condition. The present study 
is an investigation of the stability of the flows reported 
in refs. [4-81 and, consequently, the same vapour free 
stream condition is retained. 

Almost all of the previous studies of the stability 

of film condensation are based on the parallel flow 
approximation and effects of nonparallelism in the 
base flow are also neglected in the present analysis. 
The interfacial mass, momentum and energy con- 
ditions across the liquid-vapour interface during forced 
vapour condensation were formulated in ref. [ 141 for 
the case of negligibly small vapour hydrodynamic 
boundary layer thickness and the dimensionless prob- 
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NOMENCLATURE 

A complex wave amplitude 
u wave amphtude 
c complex wave velocity, c, + ic, 
c,19 ci3 wave amplification rate coefficients 
C,I, C,) wave velocity coefficients 
F acceleration effect parameter, 

(c~AT~~s~)P~ 

1 
gravitational acceleration 
length of plate 

L C/(29/s) “3 
L,, L, differential operators given in 

Appendix B 
N ~'!30//p,,4!3gI 3 

Pr Prandtl number 
R gq;pv 

t:t dimensional, dimensionless time 
T,, T,, Tz multiple time scales 
5?, Fs, Fw liquid, vapour, wall temperatures 
u 0”(J( gvj2) ‘.‘3 
& vapour ~-component velocity 

00 characteristic velocity, g$g/2v 

& base flow Z-component velocity 
u Q0 l&l 
V” vapour $-component velocity 

F”Ll base Sow j-component velocity 
V - F”;,/r7, 
(2, p)>, (x, Y) dimensional, dimensionless 

Cartesian coordinates. 

Greek symbols 
M wave number, 2711jJ;C 

1 P,lP 
t: small parameter 

ri film thickness 

90 time averaged base flow film thickness 

+i dimensionless base flow film thickness 

4 dimensionless disturbance film 
thickness 

0 dimensionless hquid temperature 
I, wavelength 
V liquid kinematic viscosity 

P? P, liquid, vapour density 
surface tension 

; angle of inclination 
6 vapour potential function 
Q, dimensionless vapour disturbance 

potential function 
Y dimensionless liquid stream function. 

Subscripts 
.x, y, z, t, T,, T,, T, partial differentiation 

with respect to the subscript. 

Dimensionless terms 
t ~~~~~~ 
X G%O 

Y Y/ii0 
Z XY 

riliio 
: L&/@o& 

FIG. I. Geometry of the separated two-phase flOW 

lem formulation was analysed by means of an asymp- 
totic expansion valid for small wave numbers leading 
to a first-order asymptotic solution for the liquid 
stream function and the liquid temperature distri- 
bution. The problem formulation is given by equa- 
tions (20))(33) of ref. [14]. It is noted here that this 
problem formulation is based on a generalized version 
of the so called ‘asymptotic shear stress interfacial 
condition’ which is represented by interfacial con- 

dition (28) of ref. [14]. The derivation of this inter- 
facial condition is obtained via neglect of vapour 
boundary layer and by balancing the liquid shear 
stress with the momentum Aux across the interface. 
Negligence of the vapour boundary layer is a valid 
approximation at high condensation rates. When the 
condensation rate is high, the vapour hydrodynamic 
boundary layer thickness becomes thin and it then 
becomes possible to study the non-linear stability 
problem by considering the coupled system of the 
condensate film and the free stream vapour flow. 
The interfacial condition (28) reported in ref. [14] 
corresponds to and is in agreement with equation (4) 
of ref. [6] and equation (5) of ref. 271. 

A first-order asymptotic solution of the non-linear 
stability problem with respect to the dimensionless 
wave number is given by equations (37)-(45) of ref. 
[14]. Substitution of this solution into interfacial con- 
ditions (30) and (31) of ref. [14] yields an interfacial 
mass conservation condition (equation (46) of ref. 
[14]) and an interfacial energy conservation condition 
(equation (47) of ref. 1141). The stability problem was 
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then obtained by separating the film thickness and the in ref. [14]. Coefficients jo-j6, kO-k28 and B,-B, were 
vapour free stream potential function into base flow reported in ref. [14]. The remaining coefficients are 
and disturbance components. The procedure reported listed in Appendix A. In the above equations S1 and 
in ref. [14] leads to the following base flow and non- S2 correspond to effects of the finite amplitude dis- 
linear stability problems. turbance on the base flow. The base flow problem will 

The base flow problem : not be analysed in this study. A solution of the base 

(a) interfacial energy condition 
flow problem for the special case of vanishing wave 
amplitude (E = 0) corresponding to steady forced 

ko/~-k2ij2rf,-k,U~,+~2S2 = ;jk,q3fx 
vapour flow condensation is presented in ref. [15]. 

SOLUTION BY THE METHOD OF MULTIPLE 

-k,6~‘i%}+~(~3); (1) SCALES 

(b) interfacial mass condition Interfacial mass condition (6) contains errors of the 

jo/~-jz~2&,-j,U~X- V+tzS, +0(x*) = 0. (2) 
order of x2 and s3. Analysis of the stability problem 
to second order with respect to the wave amplitude 

The non-linear stability problem : will therefore contain errors of the order of ~1’ if the 

(a) disturbance vapour motion and conditions at 
wave number and the wave amplitude are of the same 
order. It is therefore necessary to consider the wave 

z=co number to be of the order of the square of the wave 

$,,+@** = 0 (3) amplitude. Condition (6) will then be expressed in the 

cD,=mZ=O atz=cc; (4) 
following form : 

(b) interfacial energy condition valid at z = 0 
jorl-@', = 4-~,+jov2)+~2(-j0~3-jlv, 

-jsrlx-j4~xx+cI~=,,)+O(&3) atz=O. (7) 
k,rl+k,?,+k,,tlx+k,s~,+ksrl,,+k,sl,, 

Transformation from equation (6) into equation (7) 
+k3~xx+kzO~~xxr-k2,~xxx_ks~~~r is algebraically permissible noting that E is a dummy 

=& 
{ 

variable and that this parameter will be replaced by 

-S2+ko'12-2k2rl'lx-kj~,~~--z9rx~xl 
unity at the end of the analysis. 

In order to study the non-linear stability charac- 

-k~rtx@xxx-2&rl~xxz +~P,orltlfk,,vRx 

teristics of waves having weak temporal amplification 
rates, the linear problem will be converted into a 
purely dispersive system by the introduction of 

+ks~~~,-k,~~~‘xr+3Vk?9~x,+3ks~~xt k,, = L,,+cI- (8) 

-3kg?tlxx*+k~*ll~t-k,IY]t~x+k33~,~,1 
I 

into equation (5) where 

E17 = E(k, -joks)+jok2, (9) 

+.s* 
1 

-k,r3-kkzr2r,--k3~~,~,,--kj~*~~xx= 
and E represents the wave speed corresponding to 
neutrally stable disturbances. The resulting stability 

-km@, + ; [k&l’*& + 3ksrl%@xx 

problem will be analysed by the method of multiple 
scales [ 161. Introducing multiple time scales given by 

To = t, T, = Et, T2 = e2t (10) 

the partial time derivative is transformed according 
to 

+k,mx%-k,a@,21 +O(E~)+OV); 
I 

(5) 
a a a a 
dt+aT,+E~+E2zy. (11) 

(c) interfacial mass condition valid at z = 0 Introduction of relation (11) and the following 

j~rl+j,~,+(j~+Uj~)~~+j~~~~-~~--~~, 

asymptotic expansions : 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Q, = a0 +&a, +A-D, + O(E3) (12) 

+~2{-jof?3-j2r2~,]+O(a2)+O(&3). (6) 
r = I10+El11+E2~2+O(E3) (13) 

into equations (3)-(5) and (7) yields three problems 
The non-linear terms in equations (5) and (6) were corresponding to each order of E. These problems are 
neglected in the linearized stability analysis reported given in Appendix B. The dimensionless y-component 
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vapour velocity has been eliminated from the stability 
problem given in Appendix B by substitution of 
V = j0+.s2S, from equation (2). The solution of the 
zeroth-order perturbation problem is a transverse dis- 
turbance with slow amplitude modulation given by 

‘lo = Ae’X+,Je-‘” (14) 

@” = -j,) em- 7” (15) 

where X = .x-CT,. A = A( T,, T,) is the complex 

wave amplitude which is a function of the slow time 
scales. A is the complex conjugate of A. The zeroth- 
order wave speed is found to be 

F = -(&,+.1&23)lk,9. (16) 

Substitution of the zeroth-order problem into the first- 
order problem and elimination of the steady terms in 
the interfacial energy condition yields 

S, = 2k,AA. (17) 

By this means, steady terms in the energy interfacial 
condition of the first-order problem are carried to 
equation (1) which is for the base flow film thickness. 

Application of the solvability condition to the first- 
order problem then yields 

The interfacial energy condition in the first-order 

problem given in Appendix B then becomes 

L,q,+L2Q, = (k,,+ik,g)A2e’2X+CC atz = 0 

(19) 

where CC stands for the complex conjugate of the 
first term on the right-hand side. Steady terms in the 
interfacial mass condition of the first-order problem 
are carried to the steady part of the interfacial mass 
condition (equation (2)) by choosing 

S, = 2joAA. (20) 

The interfacial mass condition in the first-order prob- 

lem then takes the following form : 

0,; = -j,(A2e’2X+CC) at2 = 0. (21) 

Solution for the Laplace equation and boundary con- 
ditions at z = cc given in the first-order problem 
reported in Appendix B together with conditions (19) 
and (21) is then obtained as 

r, = bAze’2%+~‘J2e-‘*X (22) 

@, = ~jo(l-b)e~2ZA2e~2r+CC (23) 

where b = b, + ibi is given in Appendix A and 6 is the 
complex conjugate of b. Substitution of equations (14) 
and (15) and equations (22) and (23) into the right- 

hand side of the second-order problem in Appendix 
B and application of the solvability condition now 
yields 

(.jokx-k, -ik,,)g, + (k,,+ik,,)A’A = 0. (24) 

Variation of the complex wave amplitude of the non- 
linear stability problem with respect to the slow time 

scales T, and T, are given by equations (18) and (24). 
Complex wave amplitude A will now be expressed by 

A = lue’/’ (25) 

where a( T,, TZ) is a real function for the wave ampli- 
tude and b(T,, T,) is a correction to the zeroth-order 
linear wave amplification rate, ?. Application of equa- 
tion (25) to equations (18) and (24) gives 

&I k,,l 

CiT, (k, -.iok,)‘+kha 

FB (k, -.jokK)r 

?T, (k, -.iok,)‘+kT, 

au kr&,,+(k, --j&P,, , -. =p 
IYT, 4((k, -j&d’+k?,) a 

(‘p klgk,8+tjc,k,-kl)k49 

GTz 4((k, -,jnkx)’ +k:,j-’ 

(26) 

(27) 

(28) 

(29) 

Noting that the wave amplification rate and the wave 
speed are given by 

and utilizing equations (26))(29) together with equa- 
tion (8). one obtains 

d(sa) 
r -dt- = cljc,, +c,3(Ea)2}Ea 

ci = c,, +c,J(Eu)J. (33) 

Here, CW,, is the linear wave amplification rate and CLC,~ 
is the coefficient of the non-linear wave amplification 

rate. c,, is the linear wave velocity and c,3 is the 

coefficient of the non-linear correction to wave speed. 

These coefficients are given by 

k,,k,,$-(.jOk8-kI)k49 
C,) = 

4((jok8-k,)'+k?9) 

(34) 

(35) 

(36) 

(37) 
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Finally, equations (32) and (33) are simplified by 
letting E = 1. 

DISCUSSION 

The scaling in the non-linear stability problem (in 
equations (IO)-(14) of ref. [14]) require that mean 
liquid and vapour velocities be of the same orde’r with 
respect to tl. The solution of the problem based on 
this scaling (equations (34), (37) and (41) of ref. [14]) 
introduces F as an important parameter relating the 
mean vapour and liquid velocities. It is noted that the 
mean liquid and vapour velocities cannot be 
independently specified in the statement of the mathe- 
matical formulation of the problem. On the contrary, 
a given mean vapour velocity will establish a cor- 
responding mean liquid velocity. The relationship 
between Y and @ is explicitly displayed in the solution 
given in equation (37) of ref. [14]. Specifically, it is 
found that Y = O(1) whenever CD = 0(1/n with 
respect to the acceleration effect parameter, F. 

The scaling in ref. [14] further requires that 
@$ N -crV,. Noting that 9 N - Vcl, V N j,,, 
j, = F/yR and that Y, = O(1) with respect to tl, it is 
clear that F/u.R is of first order with respect to CI. Here, 
F/R is the slow scale for the base flow and a is the 
slow scale for the stability problem. This ordering 
limits the applicability of the non-linear stability 
results to (CI( << 1, i.e. to long waves. The present 
results will be inapplicable for short waves and the 
following discussion will be limited to long waves. The 
solution to the non-linear stability problem as given 
by equations (32)-(37) is in dimensionless form and 
can be utilized to study many special situations. The 
solution depends on eight parameters u, L, u, Pr, N, 
F, y and 4. Results will be discussed only for forced 
vapour flow condensation of saturated steam at 100°C 
onto an isothermal surface at 53°C. Only three differ- 
ent surface orientations depicted in Fig. 2 will be con- 
sidered, namely 4 = 0, -9O”, and 90”. For this prac- 
tical example Pr = 2.62, N = 12 347, F = 0.0333 and 
y = 0.00061. In the present study, the linearized part 
of the stability problem has been simplified by the 
transformation of the interfacial mass conservation 
condition (6) into equation (7). As a result, the 
expression for the linear wave amplification rate given 

P 

- 

\ ’ h0 & 
vo 

CONDENSATION BELOW A 
HORIZONTAL SURFACE 4=-90 

CONO;NSATlON ON CONDENSATION ABOVE A 

A VERTf$L SlJ7FACE I-DRIZONTAL SURFACE 
6=90 

FIG. 2. Vertical and horizontal surface orientations. 
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WAVE NUMBER 

FIG. 3. Linear wave amplification rates for condensation 
below a horizontal surface. 

by equation (34) is an approximation to equation 
(67) of ref. [14]. In order to test the accuracy of this 
approximation, NC,, computed from equation (34) is 
compared with tlci obtained from equation (67) of 
ref. [14] in Fig. 3 for condensation below horizontal 
surfaces. Good agreement between the two pre- 
dictions for the linear wave amplification rate has been 
observed for other values of Pr, N, F, y, and 4. A 
slightly larger discrepancy is observed between the 
two predictions at larger vapour velocities and smaller 
density ratios which can be seen by the comparison 
of Fig. 7 of this study with Fig. 5(a) of ref. [14]. The 
non-linear wave amplification rate computed from 
equation (32) for the same physical situation is 
depicted in Fig. 4. It is observed from this figure that 
an increase in the dimensionless free stream vapour 
velocity, U, from 100 to 250 is sufficient to completely 
stabilize a finite amplitude wave on a condensate film 
under a horizontal surface and located at a dimen- 
sionless distance of L = 815 from the leading edge of 
the isothermal plane surface. Increased vapour veloc- 
ity has stabilizing effects on both small amplitude 
disturbances (Fig. 3) and finite amplitude dis- 
turbances (Fig. 4) for this example. Linear and non- 
linear wave amplification rates for cocurrent forced 
vapour flow condensation at a dimensionless location 
L = 8 15 from the upper end of an isothermal vertical 

4xld I I , 
Pr=262 

FIG. 4. Wave amplification rates for condensation below a 
horizontal surface. 
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Pr=2.62 
N =123L7 
F = 0.0333 
a=000061 
Q-O 
L =815 j 

----U=O (R=ZO.O) 
-U*250(R=!H) 

..d----L--__._L__ _-I 
01 0.2 03 OL 

WAVE NUMBER 

FIG. 5. Linear and non-linear wave amplification coefficients 
for condensation on a vertical surface. 

Pr.2 62 

---U-250 
I 

-oc+-L----- 
-05 

WAVE AM&UDE. a 
0.5 1 

FIG. 6. Wave amplification rates for condensation on a 
vertical surface. 

surface are depicted in Fig. 5. The linear wave ampli- 
fication rate decreases drastically while the non-linear 
wave amplification rate increases slightly as the 
dimensionless vapour velocity is increased from 0 to 
250. The overall effect decreases the equilibrium wave 
amplitude by an order of magnitude. Figure 6 shows 
the wave amplification rate for a finite amplitude dis- 
turbance when GC = 0.1 for the same physical situation 
when the location on the surface is changed from 
L = 815 to 2766. For this case, the condensate film 
admits finite amplitude wave motion with large equi- 
librium amplitudes. Increase of the dimensionless 
vapour velocity from 0 to 250 tends to decrease the 
equilibrium wave amplitude. 

Non-linear stability characteristics of a disturbance 
on a condensate fiim Rowing over a ho~zonta~ plate 
and located at a dimensionless distance L = 2766 
from a leading edge of the plate are considered in Figs. 
7 and 8. A finite amplitude disturbance at this location 
is completely stable when u = 250. The linear wave 
amplification coefficient, CLC~,, is positive inside a small 
wave number band centred about a = 0.04 when 
EI = 500, The non-linear coefficient, tl~, is negative 
inside the same wavelength band. In this case, the 
condensate film admits supercritically stable finite 
amplitude wave motion. With further increase of the 
vapour velocity to u = 750 both linear and non-linear 
amplification coefficients become positive inside the 

Pr-2.62 
N -123L7 
F = 00333 
a=0MM61 
&=90 
L = 2766 

WAVE M..M?ER. d 

FIG. 7. Linear wave ampli~eation rates for condensation 
above a horizontal surface. 

WAVE NUMBER, d 

FIG. 8. Non-linear wave amplification coefficient for con- 
densation above horizontal surfaces. 

wave number band 0.08 < x < 0.11 which may be an 
indication of possible entrainment into the vapour 
phase. The theoretical analysis presented in this study 
will lead to results of further practical value when the 
analysis is extended for the prediction of heat transfer 
through a wavy condensate film flowing on a surface 
of arbitrary inclination and adjacent to a forced 
vapour flow. 
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APPENDIX A 

k*s = k,+ak* 

k,. = 4Uk,6-3k5-2U2k,j+6k,S 

k,, = 3Uk,+5k,4 

kA* = 4k,*-2Uk,, 

k,, = kj6-2Uk,* 

k,, = 6CJk,,+15k,S-U2k,,-3k, 

k35 = lOk,,+3Uke 

k,, = 6k,*-Uk,, 

k,, = 4k,,-4Uk,, 

k,, = kO-jo(k,--k*,)-j,k,(l-2a)-2(k,,-jik, 

-jOk*3)+2jike-6ks+2Ckk3* 

k,s = -2k*+2joks, -6q,ks+2Ej0k,, +2jOk3* 

k,, = kj8 +2&k, -4j,k*,, 

kAI = k99+4j0Fk,-4j,k*, 

k,* = 2jok~-4jOk*0+kO-4k,8+16ks+4W,9 

kq) = 4j,Fk,-4j,k*, -2Ek, +26,, 

k.+d = 2k0-21kg+Ek~*-k,,-j0(4k*9+6ak3 

+jok,+2j0k7) 

k45 = -2k*+jo(3ksI-9?k,-3Ek,,- 3k3,) 

k46 = -3k,-3k,-k,,+Ek,,+j,(2k*,+k,-6ak, 

-k,+4j0ka+3jok,+3j,k,l) 

HWT 31:8-P 

k4, = -k*-j0(2k,,+3Eks+Ek,,-k*x-3k,5+k37) 

k48 = b,k,,-bik,,+kdg 

k.,g = bik44+brk4S+k.v 

b, = (k40k4*+k&*)/(k:* +k:,) 

bi = (k.,,k4*-k40k43)l(k:*+k&). 

APPENDIX B 

Zeroth-order problem 
Differential equation 

@0xX +%ZZ = 0. 

Boundary conditions at z = co 

Qox = @OX = 0. 

Interfacial energy condition at z = 0 

L,no+L*@o = 0 

where operators L, and L* are given as follows : 

a* 
II =k,+k,~+E,,~+k,,~+k~~+k,~~ 

0 axaT, 

L,=k,$+k 
a' 

*“ax2az -k*,$k 
a3 

8axzaT, 

Interfacial mass condition at z = 0 

% = iOVO. 

First-order problem 
Differential equation 

%.x+%ZZ = 0. 

Boundary conditions at z = co 

a*, = QII = 0. 

Second-order problem 
Differential equation 

@2xX +@*rr = 0. 

Boundary conditions at z = co 

@*x = @*= = 0. 
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STABILITE NON LINEAIRE DE LA CONDENSATION D’UN ECOULEMENT FORCE 
DE VAPEUR 

R&m&On &die par la mkthode des irchelles multiples la stabilitt non linkaire d’un film liquide de 
condensation s’tcoulant sur une surface inclinte isotherme et adjacente B un tcoulement de vapeur pure. 
Les resultats de l’analyse sont discutes dam les cas sp6ciaux de la condensation d’un Ccoulement for& de 
vapeur sur des surfaces verticales, sous et au-dessus de surfaces horizontales. On trouve que l’accroissement 
de la vitesse de la vapeur g cocourant a un effet stabilisant sur les films minces de condensat sur des surfaces 
verticales et sous des surfaces horizontales quand la vitesse de vapeur est faible. On trouve aussi que des 
films minces coulant au-dessus des surfaces horizontales sous l’action d’une faible vitesse for&e de vapeur 
g cocourant sont stables vis-8-vis de perturbations infinitCsimales ou d’amplitude finie. mais deviennent 

instables aux grandes vitesses de vapeur. 

NICHTLINEARE STABILIT;iT BE1 DER KONDENSATION IN ERZWUNGENER 
DAMPFSTROMUNG 

Zusammenfassung-Es wird die nichtlineare Stabilitlt eines Kondensatfilms, der auf einer gencigten iso- 
thermen Oberflache fliel3t und an seinen striimenden Dampf angrenzt, untersucht. Ergebnisse der Unter- 
suchung werden fiir Spezialfille eriirtert : Fi.ir die Kondensation einer erzwungenen Dampfstrdmung 
an vertikalen Oberfl%chen und an der Unter- and Oberseite von horizontalen F&hen. Zunehmende 
gleichgerichtete Dampfgeschwindigkeit hat auf einen diinnen Kondensatfilm auf einer vertikalen Ober- 
&he und an einer horizontalen Unterseite einen stabilisierenden EinfluO, solange die Dampf- 
geschwindigkeiten klein sind. Ein diinner Kondensatfilm, der iiber eine horizontale Oberflache flieRt, ist 
unter der Einwirkung gleichgerichteter niedriger erzwungener Dampfgeschwindigkeit stabil. Dies gilt fiir 
Statungen mit unendlich kleiner oder such endlicher Amplitude. Der Film wird jedoch bei h6heren 

Dampfgeschwindigkeiten instabil. 

HEJIEIHEfiHAX YCTO@IklBOCTb KOHAEHCALJHM I-IPA BMHYXAEHHOM TE’JEHHM 
IIAPA 

AImoTaunPHenaHefiHan ycrotiqmiocTb n_neHKn XBAKOTO KoweHcaTa, HaTeKamueti Ha HaKnoeHym 

H30TepMHWCKyfO nOBepXHOCTbHnpHMbIKiuoLU,'EOKABH~yIAeMyCSInOTOKy 6ecnpHMecHoronapa,uccne- 
AyeTCK MeTOAOM MHOXWZTBeHHbIX MaCUITa6OB. Pe3yJIbTaTbI aIiaJIH3a 06CyXCAkUOTCK AJIR KOHKpTHbIX 

CAyqaeB KOHAeHCaUHH BOAKHOTO napa Ha BepTHKaJIbHbIX nOBepXHOCTKX, nOA TOpH30HTaJIbHbIMH 

nOBepXHOCTKMH II HaA HBMB. 06HapymeHo, 'iT0 BO3paCTaKWaK CKOpOCTb COnyTCTByIOIJlel-0 nOTOKa 

OKa3bIBaeT cra6una3upymmee BJtHRHBe Ha TOHKHe IIJIeHKB KOHAeHCaTa,CTeKaKJLWie n0 BepTBKWbHbIM 

noBepxHoCTnM II noA TOpA30HTaJIbHbIMH noBepxHocTnMH B cnyrae MaJ,bIX CKopoCTefi nOTOKa napa. 

HafiAeHO TaKxe,STO TOHKHe MeHKB KOHAeHCaTa,ABSl~yIl,HeCff HaATOpB30HTaJIbHbIMB IIOBepXHOCTKMti 

nOA AekTBHeM COnyTCTByl‘,"JerO HBSKOCKOPOCTHOrO BbIHylKAeHHOl-0 nOTOKa BOASIHOrO napa, yCTOir- 

WBbI no OTHOIIICHIIIO K B03MyLWHHRM HH+HHHTe3eManbHO8 H KOHeYHOfi aMnAHTyA, HO CTaHOBIITCR 


